Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/25
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Antić, Miroslava | en_US |
dc.contributor.author | Vrancken, Luc | en_US |
dc.date.accessioned | 2022-08-06T14:49:09Z | - |
dc.date.available | 2022-08-06T14:49:09Z | - |
dc.date.issued | 2010-12-01 | - |
dc.identifier.issn | 00212172 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/25 | - |
dc.description.abstract | For a minimal surface immersed into an odd-dimensional unit sphere S2n+1 with the first (n-2) higher-order ellipses of curvature being a circle, we construct a sequence of such surfaces and investigate if some two minimal surfaces in such a sequence can be congruent by an orientationreversing isometry. | en |
dc.relation.ispartof | Israel Journal of Mathematics | en_US |
dc.title | Sequences of minimal surfaces in S<sup>2n+1</sup> | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s11856-010-0091-0 | - |
dc.identifier.scopus | 2-s2.0-80054867380 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/80054867380 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.firstpage | 493 | en_US |
dc.relation.lastpage | 508 | en_US |
dc.relation.volume | 179 | en_US |
dc.relation.issue | 1 | en_US |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
crisitem.author.dept | Geometry | - |
crisitem.author.orcid | 0000-0002-2111-7174 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
7
checked on Apr 1, 2025
Page view(s)
14
checked on Jan 19, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.