Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2542
DC FieldValueLanguage
dc.contributor.authorLipkovski, Aleksandaren_US
dc.contributor.authorZeada, Samiraen_US
dc.date.accessioned2025-09-15T17:17:44Z-
dc.date.available2025-09-15T17:17:44Z-
dc.date.issued2015-01-01-
dc.identifier.issn03501302-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2542-
dc.description.abstractWe first present purely combinatorial proofs of two facts: the well-known fact that a monomial ordering must be a well ordering, and the fact (obtained earlier by Buchberger, but not widely known) that the division procedure in the ring of multivariate polynomials over a field terminates even if the division term is not the leading term, but is freely chosen. The latter is then used to introduce a previously unnoted, seemingly weaker, criterion for an ideal basis to be Gröbner, and to suggest a new heuristic approach to Gröbner basis computations.en_US
dc.language.isoenen_US
dc.publisherBeograd : Matematički institut SANUen_US
dc.relation.ispartofPublications de l'Institut Mathematiqueen_US
dc.titleA note on multivariate polynomial division and Gröbner basesen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/PIM141104001L-
dc.identifier.scopus2-s2.0-84929931685-
dc.identifier.isi000213186600005-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84929931685-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.issn0350-1302en_US
dc.description.rankM23en_US
dc.relation.firstpage43en_US
dc.relation.lastpage48en_US
dc.relation.volume97en_US
dc.relation.issue111en_US
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0002-7267-1490-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.