Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2522
DC FieldValueLanguage
dc.contributor.authorKnežević, Miljanen_US
dc.date.accessioned2025-09-11T16:29:29Z-
dc.date.available2025-09-11T16:29:29Z-
dc.date.issued2015-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2522-
dc.description.abstractWe give a new glance to the theorem of Wan (Theorem 1.1) which is related to the hyperbolic bi-Lipschicity of the K-quasiconformal, K≥1, hyperbolic harmonic mappings of the unit disk D onto itself. Especially, if f is such a mapping and f(0)=0, we obtained that the following double inequality is valid 2|z|/(K+1)≤|f(z)|≤√K|z|, whenever z∈D.en_US
dc.language.isoenen_US
dc.publisherČačak : University of Kragujevac, Faculty of Technical Sciencesen_US
dc.relation.ispartofMathematica Moravicaen_US
dc.subjectHyperbolic metricsen_US
dc.subjectHarmonic mappingsen_US
dc.subjectQuasiconformal mappingsen_US
dc.titleOn the Theorem of Wan for K-Quasiconformal Hyperbolic Harmonic Self Mappings of the Unit Disken_US
dc.typeArticleen_US
dc.identifier.doi10.5937/MatMor1501081K-
dc.identifier.urlhttps://www.moravica.ftn.kg.ac.rs/Vol_19-1/07-Knezevic.pdf-
dc.contributor.affiliationReal and Complex Analysisen_US
dc.relation.issn1450-5932en_US
dc.description.rankM52en_US
dc.relation.firstpage81en_US
dc.relation.lastpage85en_US
dc.relation.volume19en_US
dc.relation.issue1en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptReal and Complex Analysis-
crisitem.author.orcid0009-0000-4055-1227-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.