Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/24
DC FieldValueLanguage
dc.contributor.authorAntić, Miroslavaen_US
dc.contributor.authorHu, Zejunen_US
dc.contributor.authorMoruz, Marilenaen_US
dc.contributor.authorVrancken, Lucen_US
dc.date.accessioned2022-08-06T14:49:08Z-
dc.date.available2022-08-06T14:49:08Z-
dc.date.issued2021-
dc.identifier.issn0025584Xen
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/24-
dc.description.abstractThe product manifold (Formula presented.) is one of the only four homogeneous six-dimensional nearly Kähler manifolds. It also admits a canonical almost product structure P, which is compatible with the almost complex structure (see Bolton et al., Tôhoku Math. J. 67 (2015), 1–17, and Moruz and Vrancken, Publ. Inst. Math. 103 (2018), no. 117, 147–158). In this paper, we investigate and describe the two-dimensional surfaces of (Formula presented.) which are P-invariant.en
dc.relation.ispartofMathematische Nachrichtenen
dc.titleSurfaces of the nearly Kähler S<sup>3</sup> × S<sup>3</sup> preserved by the almost product structureen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/mana.201900376-
dc.identifier.scopus2-s2.0-85121364233-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85121364233-
dc.contributor.affiliationGeometryen_US
dc.description.rankM22en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-2111-7174-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

15
checked on Nov 8, 2024

Page view(s)

17
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.