Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/24
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Antić, Miroslava | en_US |
dc.contributor.author | Hu, Zejun | en_US |
dc.contributor.author | Moruz, Marilena | en_US |
dc.contributor.author | Vrancken, Luc | en_US |
dc.date.accessioned | 2022-08-06T14:49:08Z | - |
dc.date.available | 2022-08-06T14:49:08Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 0025584X | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/24 | - |
dc.description.abstract | The product manifold (Formula presented.) is one of the only four homogeneous six-dimensional nearly Kähler manifolds. It also admits a canonical almost product structure P, which is compatible with the almost complex structure (see Bolton et al., Tôhoku Math. J. 67 (2015), 1–17, and Moruz and Vrancken, Publ. Inst. Math. 103 (2018), no. 117, 147–158). In this paper, we investigate and describe the two-dimensional surfaces of (Formula presented.) which are P-invariant. | en |
dc.relation.ispartof | Mathematische Nachrichten | en |
dc.title | Surfaces of the nearly Kähler S<sup>3</sup> × S<sup>3</sup> preserved by the almost product structure | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1002/mana.201900376 | - |
dc.identifier.scopus | 2-s2.0-85121364233 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85121364233 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.description.rank | M22 | en_US |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
crisitem.author.orcid | 0000-0002-2111-7174 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
15
checked on Nov 8, 2024
Page view(s)
17
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.