Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2458
DC FieldValueLanguage
dc.contributor.authorNikolić, Jovanaen_US
dc.date.accessioned2025-09-06T07:48:28Z-
dc.date.available2025-09-06T07:48:28Z-
dc.date.issued2015-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2458-
dc.description.abstractConnections and covariant derivatives are usually taught as a basic concept of differential geometry, or more precisely, of differential calculus on smooth manifolds. In this article we show that the need for covariant derivatives may arise, or at lest be motivated, even in a linear situation. We show how a generalization of the notion of a derivative of a function to a derivative of a map between affine spaces naturally leads to the notion of a connection. Covariant derivative is defined in the framework of vector bundles and connections in a way which preserves standard properties of derivatives. A special attention is paid on the role played by zero--sets of a first derivative in several contexts.en_US
dc.language.isoenen_US
dc.publisherBeograd : Društvo Matematičara Srbijeen_US
dc.relation.ispartofThe Teaching of Mathematicsen_US
dc.subjectaffine spaceen_US
dc.subjectsecond derivationen_US
dc.subjectconnectionen_US
dc.subjectvector bundleen_US
dc.titleFrom Differentiation in Affine Spaces to Connectionsen_US
dc.typeArticleen_US
dc.identifier.isi000443522100002-
dc.identifier.urlhttps://www.teaching.math.rs/vol/tm1822.pdf-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.issn1451-4966en_US
dc.relation.firstpage61en_US
dc.relation.lastpage80en_US
dc.relation.volume18en_US
dc.relation.issue2en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0001-7696-2554-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.