Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2452
DC FieldValueLanguage
dc.contributor.authorLipkovski, Aleksandaren_US
dc.date.accessioned2025-09-05T16:17:11Z-
dc.date.available2025-09-05T16:17:11Z-
dc.date.issued2015-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2452-
dc.description.abstractThe quadratic Vieta formulas (x,y)↦(u,v)=(x+y,xy) in the complex geometry define a two-fold branched covering C2→C2 ramified over the parabola u2=4v. Thinking about topics considered in Arnold's paper Topological content of the Maxwell theorem on multipole representation of spherical functions, I came to a very simple idea: in fact, these formulas describe the algebraic structure, i.e., addition and multiplication, of the complex numbers. What if, instead of the field of complex numbers, we consider an arbitrary ring? Namely for an arbitrary ring A (commutative, with unity) consider the mapping Φ:A2→A2 defined by the Vieta formulas (x,y)↦(u,v)=(x+y,xy). What kind of algebraic properties of the ring itself does this map reflect? At first, it is interesting to investigate simplest finite rings A=Zm and A=Zk×Zm. Recently, it has been very popular to consider graphs associated to rings (the zero-divisor graph, the Cayley graph, etc.). In the present paper, we study the directed graph defined by the Vieta mapping Φ.en_US
dc.language.isootheren_US
dc.publisherMoskva : Moskovski gosudarstveni univerzitet MGUen_US
dc.relation.ispartofFundamentalnaya i Prikladnaya Matematikaen_US
dc.titleСтруктурные графы колец: определения и первые результатыen_US
dc.title.alternativeStructure graphs of rings: definitions and first resultsen_US
dc.typeArticleen_US
dc.identifier.urlhttps://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=fpm&paperid=1658&option_lang=eng-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.issn1560-5159en_US
dc.relation.firstpage181en_US
dc.relation.lastpage190en_US
dc.relation.volume20en_US
dc.relation.issue3en_US
item.languageiso639-1other-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0002-7267-1490-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.