Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/240
DC FieldValueLanguage
dc.contributor.authorFulek, Radoslaven_US
dc.contributor.authorKeszegh, Balázsen_US
dc.contributor.authorMorić, Filipen_US
dc.contributor.authorUljarević, Igoren_US
dc.date.accessioned2022-08-06T17:42:26Z-
dc.date.available2022-08-06T17:42:26Z-
dc.date.issued2010-12-01-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/240-
dc.description.abstractBy a polygonization of a finite point set S in the plane we understand a simple polygon having S as the set of its vertices. Let B and R be sets of blue and red points, respectively, in the plane such that B ∪ R is in general position, and the convex hull of B contains k interior blue points and l interior red points. Hurtado et al. found sufficient conditions for the existence of a blue polygonization that encloses all red points. We consider the dual question of the existence of a blue polygonization that excludes all red points R. We show that there is a minimal number K = K(l), which is a polynomial in l, such that one can always find a blue polygonization excluding all red points, whenever k ≥ K. Some other related problems are also considered.en
dc.titleOn polygons excluding point setsen_US
dc.typeConference Paperen_US
dc.relation.publicationProceedings of the 22nd Annual Canadian Conference on Computational Geometry, CCCG 2010en_US
dc.identifier.scopus2-s2.0-84874160880-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84874160880-
dc.contributor.affiliationDifferential Equationsen_US
dc.relation.firstpage273en_US
dc.relation.lastpage276en_US
item.fulltextNo Fulltext-
item.openairetypeConference Paper-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptDifferential Equations-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 7, 2024

Page view(s)

11
checked on Nov 14, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.