Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/23
DC FieldValueLanguage
dc.contributor.authorAntić, Miroslavaen_US
dc.date.accessioned2022-08-06T14:49:08Z-
dc.date.available2022-08-06T14:49:08Z-
dc.date.issued2022-
dc.identifier.issn14226383en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/23-
dc.description.abstractThe procedure of constructing a Lagrangian immersion in the complex projective space, starting with two other Lagrangian immersions into complex projective spaces of lesser dimension is known as a Calabi product, motivated by the similar construction in the affine differential geometry. In particular, one may consider a point instead of the one of the immersions, and in both cases the submanifold has a warped product structure of the interval and one or two Lagrangian immersions. Such Lagrangian submanifold then admits a splitting of the tangent bundle into orthogonal subbundles defined in terms of the corresponding second fundamental form, in case of a point and an immersion decomposition consists of two components and in case of a proper Calabi product, decomposition has three components. The generalization of this notion was investigated for Lagrangian immersions in complex space form Mn(4 c) , where c≠ 0. Here we study the case c= 0. We investigate the properties of the Lagrangian immersions into Cn with tangent bundle admitting the decomposition in question and further, we give explicit expressions for such immersions.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofResults in Mathematicsen_US
dc.subjectCalabi type producten_US
dc.subjectcomplex spaceen_US
dc.subjectLagrangian submanifoldsen_US
dc.subjectMSC 53B20en_US
dc.subjectMSC 53B25en_US
dc.subjectwarped producten_US
dc.titleCharacterization of Warped Product Lagrangian Submanifolds in C<sup>n</sup>en_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00025-022-01621-8-
dc.identifier.scopus2-s2.0-85127518210-
dc.identifier.isi000777179300001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85127518210-
dc.contributor.affiliationGeometryen_US
dc.relation.issn1422-6383en_US
dc.description.rankM21aen_US
dc.relation.firstpageArticle no. 109en_US
dc.relation.volume77en_US
dc.relation.issue3en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-2111-7174-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

19
checked on Mar 27, 2025

Page view(s)

26
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.