Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/239
DC FieldValueLanguage
dc.contributor.authorMerry, Will J.en_US
dc.contributor.authorUljarević, Igoren_US
dc.date.accessioned2022-08-06T17:42:25Z-
dc.date.available2022-08-06T17:42:25Z-
dc.date.issued2019-01-01-
dc.identifier.issn00212172en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/239-
dc.description.abstractIn the setting of symplectic manifolds which are convex at infinity, we use a version of the Aleksandrov maximum principle to derive uniform estimates for Floer solutions that are valid for a wider class of Hamiltonians and almost complex structures than is usually considered. This allows us to extend the class of Hamiltonians which one can use in the direct limit when constructing symplectic homology. As an application, we detect elements of infinite order in the symplectic mapping class group of a Liouville domain and prove existence results for translated points.en
dc.relation.ispartofIsrael Journal of Mathematicsen_US
dc.titleMaximum principles in symplectic homologyen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11856-018-1792-z-
dc.identifier.scopus2-s2.0-85055754164-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85055754164-
dc.contributor.affiliationDifferential Equationsen_US
dc.relation.firstpage39en_US
dc.relation.lastpage65en_US
dc.relation.volume229en_US
dc.relation.issue1en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptDifferential Equations-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

6
checked on Nov 11, 2024

Page view(s)

13
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.