Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2390
DC FieldValueLanguage
dc.contributor.authorGrbić, M.en_US
dc.contributor.authorKartelj, Aleksandaren_US
dc.contributor.authorMatić, D.en_US
dc.contributor.authorFilipović, Vladimiren_US
dc.date.accessioned2025-08-28T14:11:28Z-
dc.date.available2025-08-28T14:11:28Z-
dc.date.issued2016-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2390-
dc.description.abstractClassification algorithms are intensively used in discovering new information in large sets of biological data. In cases when classification tasks involve nominal attributes, some of commonly used classification tools do not obtain results of satisfying quality, since mathematical operations and relations can not be directly applied to symbolic values. This problem often appears in the k-nearest neighborhood (KNN) classification because the standard Euclidean distance function can become burdened by the large number of irrelevant attributes, consequently producing inaccurate classification results. In this paper we examine several metrics which can be applied to nominal attributes and for each metric we apply the appropriate KNN strategy. In order to justify the proposed approach, comprehensive experiments are performed on a dataset of prokaryiotic organisms. Experimental results indicate that the new classifications are more accurate than those obtained by the previously used methods, getting better results in seven of total of twelve cases.en_US
dc.language.isoenen_US
dc.publisherBeograd : Matematički fakulteten_US
dc.subjectbioinformaticsen_US
dc.subjectclassificationen_US
dc.subjectNearest neighboren_US
dc.subjectdistance metricsen_US
dc.subjectdata miningen_US
dc.titleImproving 1NN strategy for classification of some prokaryotic organismsen_US
dc.typeConference Objecten_US
dc.relation.conferenceBelgrade Bioinformatics Conference BelBI (1 ; 2016 ; Belgrade)en_US
dc.relation.publicationProceedings of the Belgrade BioInformatics Conference BelBI 2016en_US
dc.identifier.urlhttp://belbi2016.matf.bg.ac.rs/wp-content/uploads/2023/03/Proceedings.BelBi_2016.pdf-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.relation.isbn978-86-7589-124-6en_US
dc.description.rankM63en_US
dc.relation.firstpage44en_US
dc.relation.lastpage54en_US
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeConference Object-
item.cerifentitytypePublications-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.orcid0000-0001-9839-6039-
crisitem.author.orcid0000-0002-5943-8037-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.