Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/238
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Uljarević, Igor | en_US |
dc.date.accessioned | 2022-08-06T17:42:25Z | - |
dc.date.available | 2022-08-06T17:42:25Z | - |
dc.date.issued | 2018-08-01 | - |
dc.identifier.issn | 02365294 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/238 | - |
dc.description.abstract | We illustrate a somewhat unexpected relation between symplectic geometry and combinatorial number theory by proving Tamura’s theorem on partitions of the set of positive integers (a generalization of the more famous Rayleigh–Beatty theorem) using the positive S1-equivariant symplectic homology. | en |
dc.relation.ispartof | Acta Mathematica Hungarica | en |
dc.subject | partition | en |
dc.subject | symplectic homology | en |
dc.title | Partitions of the set of natural numbers and symplectic homology | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s10474-018-0812-0 | - |
dc.identifier.scopus | 2-s2.0-85044067544 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85044067544 | - |
dc.contributor.affiliation | Differential Equations | en_US |
dc.relation.firstpage | 313 | en |
dc.relation.lastpage | 323 | en |
dc.relation.volume | 155 | en |
dc.relation.issue | 2 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Differential Equations | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.