Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/238
DC FieldValueLanguage
dc.contributor.authorUljarević, Igoren_US
dc.date.accessioned2022-08-06T17:42:25Z-
dc.date.available2022-08-06T17:42:25Z-
dc.date.issued2018-08-01-
dc.identifier.issn02365294en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/238-
dc.description.abstractWe illustrate a somewhat unexpected relation between symplectic geometry and combinatorial number theory by proving Tamura’s theorem on partitions of the set of positive integers (a generalization of the more famous Rayleigh–Beatty theorem) using the positive S1-equivariant symplectic homology.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofActa Mathematica Hungaricaen_US
dc.subjectpartitionen_US
dc.subjectsymplectic homologyen_US
dc.titlePartitions of the set of natural numbers and symplectic homologyen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10474-018-0812-0-
dc.identifier.scopus2-s2.0-85044067544-
dc.identifier.isi000439904100008-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85044067544-
dc.contributor.affiliationDifferential Equationsen_US
dc.relation.issn0236-5294en_US
dc.description.rankM22en_US
dc.relation.firstpage313en_US
dc.relation.lastpage323en_US
dc.relation.volume155en_US
dc.relation.issue2en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptDifferential Equations-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

8
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.