Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/237
DC FieldValueLanguage
dc.contributor.authorFulek, Radoslaven_US
dc.contributor.authorKeszegh, Balázsen_US
dc.contributor.authorMorić, Filipen_US
dc.contributor.authorUljarević, Igoren_US
dc.date.accessioned2022-08-06T17:42:25Z-
dc.date.available2022-08-06T17:42:25Z-
dc.date.issued2013-11-01-
dc.identifier.issn09110119en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/237-
dc.description.abstractBy a polygonization of a finite point set S in the plane we understand a simple polygon having S as the set of its vertices. Let B and R be sets of blue and red points, respectively, in the plane such that B ∪ R is in general position, and the convex hull of B contains k interior blue points and l interior red points. Hurtado et al. found sufficient conditions for the existence of a blue polygonization that encloses all red points. We consider the dual question of the existence of a blue polygonization that excludes all red points R. We show that there is a minimal number K = K(l), which is bounded from above by a polynomial in l, such that one can always find a blue polygonization excluding all red points, whenever k ≥ K. Some other related problems are also considered. © 2012 Springer.en
dc.relation.ispartofGraphs and Combinatoricsen
dc.subjectConvex hullen
dc.subjectConvex subdivisionen
dc.subjectPoint set order-typeen
dc.subjectPolygonizationen
dc.titleOn Polygons Excluding Point Setsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00373-012-1221-8-
dc.identifier.scopus2-s2.0-84886599199-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84886599199-
dc.contributor.affiliationDifferential Equationsen_US
dc.relation.firstpage1741en
dc.relation.lastpage1753en
dc.relation.volume29en
dc.relation.issue6en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptDifferential Equations-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

7
checked on Nov 8, 2024

Page view(s)

11
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.