Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/2363
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Marinković, Aleksandra | en_US |
dc.date.accessioned | 2025-08-26T08:14:09Z | - |
dc.date.available | 2025-08-26T08:14:09Z | - |
dc.date.issued | 2025-11-01 | - |
dc.identifier.issn | 03930440 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/2363 | - |
dc.description.abstract | As shown by Etnyre and Honda ([2]), every contact 3-manifold admits infinitely many concave symplectic fillings that are mutually not symplectomorphic and not related by blow ups. In this note we refine this result in the toric setting by showing that every contact toric 3-manifold admits infinitely many concave symplectic toric fillings that are mutually not equivariantly symplectomorphic and not related by blow ups. The concave symplectic toric structure is constructed on certain linear and cyclic plumbings over spheres. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Journal of Geometry and Physics | en_US |
dc.subject | Concave fillings | en_US |
dc.subject | Symplectic toric manifolds | en_US |
dc.title | Concave symplectic toric fillings | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.geomphys.2025.105622 | - |
dc.identifier.scopus | 2-s2.0-105013305523 | - |
dc.identifier.isi | 001553586300001 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/105013305523 | - |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.relation.issn | 0393-0440 | en_US |
dc.description.rank | M21a | en_US |
dc.relation.firstpage | Article no. 105622 | en_US |
dc.relation.volume | 217 | en_US |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Mathematical Analysis | - |
crisitem.author.orcid | 0009-0003-5513-8576 | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.