Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2353
DC FieldValueLanguage
dc.contributor.authorSvetlik, Mareken_US
dc.date.accessioned2025-08-22T13:25:39Z-
dc.date.available2025-08-22T13:25:39Z-
dc.date.issued2016-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2353-
dc.description.abstractLet Γ be a simple closed curve in the Euclidean plane and Ω is the interior of Γ. If L is the length of Γ and A is the area of Ω, then the isoperimetric inequality states that 4 π A ≤ L<sup>2</sup> (1). Equality holds in (1) if and only if \Gamma is a circle. There are many proofs and many generalizations of inequality (1). Here, we discuss the isoperimetric-type inequalities for subharmonic functions on the polydisk, capacity, the transportation approach and related problems. In particular, we consider new approaches to the exact estimate of the isoperimetric coeffcient in the plane and the space (see for a review of the subject M. Mateljević, Isoperimetric-type inequalities for subharmonic functions on the polydisk, capacity, transportation approach, and related problems, Filomat 29:2 (2015), 275-302).en_US
dc.language.isoenen_US
dc.publisherLjubljana : Faculty of Mathematics and Physicsen_US
dc.titleIsoperimetric inequality and related problemsen_US
dc.typeConference Objecten_US
dc.relation.conferenceComplex analysis seminar (2016 ; Ljubljana)en_US
dc.relation.publicationComplex analysis seminar, abstractsen_US
dc.identifier.urlhttps://www.fmf.uni-lj.si/en/news/news/30981/marek-svetlik-isoperimetric-inequality-and-related-problems/-
dc.contributor.affiliationReal and Complex Analysisen_US
dc.description.rankM34en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptReal and Complex Analysis-
crisitem.author.orcid0009-0005-0213-2167-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.