Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/2341
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Vujošević, Biljana | en_US |
dc.date.accessioned | 2025-08-21T13:10:33Z | - |
dc.date.available | 2025-08-21T13:10:33Z | - |
dc.date.issued | 2016 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/2341 | - |
dc.description.abstract | In this paper we consider the notion of additive units and roots of a central unital unit in a spatial product system of two-sided Hilbert C*-modules. This is a generalization of the notion of additive units and roots of a unit in a spatial product system of Hilbert spaces introduced in [B. V. R. Bhat, M. Lindsay, M. Mukherjee, Additive units of product system, arXiv:1501.07675v1 [math.FA] 30 Jan 2015]. We introduce the notion of continuous additive unit and continuous root of a central unital unit ω in a spatial product system over C*-algebra B and prove that the set of all continuous additive units of ω can be endowed with a structure of two-sided Hilbert B - B module wherein the set of all continuous roots of ω is a Hilbert B - B submodule. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Vancouver : Etamaths Publishing | en_US |
dc.relation.ispartof | International Journal of Analysis and Applications | en_US |
dc.title | Additive units of product system of Hilbert modules | en_US |
dc.type | Article | en_US |
dc.identifier.isi | 000372071700002 | - |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.relation.issn | 2291-8639 | en_US |
dc.relation.firstpage | 71 | en_US |
dc.relation.lastpage | 76 | en_US |
dc.relation.volume | 10 | en_US |
dc.relation.issue | 2 | en_US |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Mathematical Analysis | - |
crisitem.author.orcid | 0000-0002-6910-6810 | - |
Appears in Collections: | Research outputs |
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.