Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/233
DC FieldValueLanguage
dc.contributor.authorŠukilović, Tijanaen_US
dc.date.accessioned2022-08-06T17:31:26Z-
dc.date.available2022-08-06T17:31:26Z-
dc.date.issued2020-01-01-
dc.identifier.issn14505584-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/233-
dc.description.abstractIn this paper the complete classification of left invariant metrics of arbitrary signature on solvable Lie groups is given. By identifying the Lie algebra with the algebra of left invariant vector fields on the corresponding Lie group G, the inner product ⟨·, · ⟩on g = Lie G extends uniquely to a left invariant metric g on the Lie group. Therefore, the classification problem is reduced to the problem of classification of pairs (g, ⟨·, · ⟩) known as the metric Lie algebras. Although two metric algebras may be isometric even if the corresponding Lie algebras are non-isomorphic, this paper will show that in the 4-dimensional solvable case isometric means isomorphic. Finally, the curvature properties of the obtained metric algebras are considered and, as a corollary, the classification of flat, locally symmetric, Ricciflat, Ricci-parallel and Einstein metrics is also given.en_US
dc.relation.ispartofTheoretical and Applied Mechanicsen_US
dc.subjectEinstein spacesen_US
dc.subjectleft invariant metricsen_US
dc.subjectmetric algebraen_US
dc.subjectRicci-parallel metricsen_US
dc.subjectsolvable Lie groupsen_US
dc.titleClassification of left invariant metrics on 4-dimensional solvable Lie groupsen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/TAM200826014S-
dc.identifier.scopus2-s2.0-85100386600-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85100386600-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage181en_US
dc.relation.lastpage204en_US
dc.relation.volume47en_US
dc.relation.issue2en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 15, 2024

Page view(s)

13
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.