Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/230
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bokan, Neda | en_US |
dc.contributor.author | Šukilović, Tijana | en_US |
dc.contributor.author | Vukmirović, Srđan | en_US |
dc.date.accessioned | 2022-08-06T17:30:52Z | - |
dc.date.available | 2022-08-06T17:30:52Z | - |
dc.date.issued | 2019-12-01 | - |
dc.identifier.issn | 00114642 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/230 | - |
dc.description.abstract | Two metrics on a manifold are geodesically equivalent if the sets of their unparameterized geodesics coincide. We show that if two G-invariant metrics of arbitrary signature on homogenous space G/H are geodesically equivalent, they are affinely equivalent, i.e. they have the same Levi-Civita connection. We also prove that the existence of nonproportional, geodesically equivalent, G-invariant metrics on homogenous space G/H implies that their holonomy algebra cannot be full. We give an algorithm for finding all left invariant metrics geodesically equivalent to a given left invariant metric on a Lie group. Using that algorithm we prove that no two left invariant metrics of any signature on sphere S3 are geodesically equivalent. However, we present examples of Lie groups that admit geodesically equivalent, nonproportional, left-invariant metrics. | en |
dc.relation.ispartof | Czechoslovak Mathematical Journal | en |
dc.subject | affinely equivalent metric | en |
dc.subject | geodesically equivalent metric | en |
dc.subject | invariant metric | en |
dc.title | Geodesically equivalent metrics on homogenous spaces | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.21136/CMJ.2018.0557-17 | - |
dc.identifier.scopus | 2-s2.0-85058146326 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85058146326 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.firstpage | 945 | en |
dc.relation.lastpage | 954 | en |
dc.relation.volume | 69 | en |
dc.relation.issue | 4 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
crisitem.author.orcid | 0000-0002-5135-869X | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
1
checked on Nov 9, 2024
Page view(s)
17
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.