Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/230
DC FieldValueLanguage
dc.contributor.authorBokan, Nedaen_US
dc.contributor.authorŠukilović, Tijanaen_US
dc.contributor.authorVukmirović, Srđanen_US
dc.date.accessioned2022-08-06T17:30:52Z-
dc.date.available2022-08-06T17:30:52Z-
dc.date.issued2019-12-01-
dc.identifier.issn00114642en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/230-
dc.description.abstractTwo metrics on a manifold are geodesically equivalent if the sets of their unparameterized geodesics coincide. We show that if two G-invariant metrics of arbitrary signature on homogenous space G/H are geodesically equivalent, they are affinely equivalent, i.e. they have the same Levi-Civita connection. We also prove that the existence of nonproportional, geodesically equivalent, G-invariant metrics on homogenous space G/H implies that their holonomy algebra cannot be full. We give an algorithm for finding all left invariant metrics geodesically equivalent to a given left invariant metric on a Lie group. Using that algorithm we prove that no two left invariant metrics of any signature on sphere S3 are geodesically equivalent. However, we present examples of Lie groups that admit geodesically equivalent, nonproportional, left-invariant metrics.en_US
dc.language.isoenen_US
dc.publisherInstitute of Mathematics of the Czech Academy of Sciencesen_US
dc.relation.ispartofCzechoslovak Mathematical Journalen_US
dc.subjectaffinely equivalent metricen_US
dc.subjectgeodesically equivalent metricen_US
dc.subjectinvariant metricen_US
dc.titleGeodesically equivalent metrics on homogenous spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.21136/CMJ.2018.0557-17-
dc.identifier.scopus2-s2.0-85058146326-
dc.identifier.isi000510735400004-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85058146326-
dc.contributor.affiliationGeometryen_US
dc.contributor.affiliationGeometryen_US
dc.relation.issn0011-4642en_US
dc.description.rankM23en_US
dc.relation.firstpage945en_US
dc.relation.lastpage954en_US
dc.relation.volume69en_US
dc.relation.issue4en_US
item.openairetypeArticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptGeometry-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0001-6371-3081-
crisitem.author.orcid0000-0002-5135-869X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

3
checked on Jan 8, 2026

Page view(s)

18
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.