Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/230
DC FieldValueLanguage
dc.contributor.authorBokan, Nedaen_US
dc.contributor.authorŠukilović, Tijanaen_US
dc.contributor.authorVukmirović, Srđanen_US
dc.date.accessioned2022-08-06T17:30:52Z-
dc.date.available2022-08-06T17:30:52Z-
dc.date.issued2019-12-01-
dc.identifier.issn00114642en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/230-
dc.description.abstractTwo metrics on a manifold are geodesically equivalent if the sets of their unparameterized geodesics coincide. We show that if two G-invariant metrics of arbitrary signature on homogenous space G/H are geodesically equivalent, they are affinely equivalent, i.e. they have the same Levi-Civita connection. We also prove that the existence of nonproportional, geodesically equivalent, G-invariant metrics on homogenous space G/H implies that their holonomy algebra cannot be full. We give an algorithm for finding all left invariant metrics geodesically equivalent to a given left invariant metric on a Lie group. Using that algorithm we prove that no two left invariant metrics of any signature on sphere S3 are geodesically equivalent. However, we present examples of Lie groups that admit geodesically equivalent, nonproportional, left-invariant metrics.en
dc.relation.ispartofCzechoslovak Mathematical Journalen
dc.subjectaffinely equivalent metricen
dc.subjectgeodesically equivalent metricen
dc.subjectinvariant metricen
dc.titleGeodesically equivalent metrics on homogenous spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.21136/CMJ.2018.0557-17-
dc.identifier.scopus2-s2.0-85058146326-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85058146326-
dc.contributor.affiliationGeometryen_US
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage945en
dc.relation.lastpage954en
dc.relation.volume69en
dc.relation.issue4en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-5135-869X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 9, 2024

Page view(s)

17
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.