Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/2284
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Timčenko, Valentina | en_US |
dc.contributor.author | Gajin, Slavko | en_US |
dc.date.accessioned | 2025-07-22T15:21:01Z | - |
dc.date.available | 2025-07-22T15:21:01Z | - |
dc.date.issued | 2017-11-21 | - |
dc.identifier.isbn | [9781538633687] | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/2284 | - |
dc.description.abstract | This paper focuses on the problem of machine learning classifier choice for network intrusion detection, taking into consideration several ensemble classifiers from the supervised learning category. We have evaluated Bagged trees, AdaBoost, RUSBoost, LogitBoost and GentleBoost algorithms, provided an analysis of the performance of the classifiers and compared their learning capabilities, taking for the reference UNSW-NB15 dataset. The obtained results have indicated that in the defined environment and under analyzed conditions Bagged tree and GentleBoost perform with highest accuracy and ROC values, while RUSBoost has the lowest performances. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.subject | Ensemble classifier | en_US |
dc.subject | Intrusion | en_US |
dc.subject | Network anomaly detection | en_US |
dc.subject | Supervised machine learning | en_US |
dc.title | Ensemble classifiers for supervised anomaly based network intrusion detection | en_US |
dc.type | Conference Paper | en_US |
dc.relation.conference | IEEE Interntional Conference on Intelligent Computer Communication and Processing ICCP (13 ; 2017 ; Cluj-Napoca) | en_US |
dc.relation.publication | 13th IEEE International Conference on Intelligent Computer Communication and Processing (ICCP) : Proceedings | en_US |
dc.identifier.doi | 10.1109/ICCP.2017.8116977 | - |
dc.identifier.scopus | 2-s2.0-85041438057 | - |
dc.identifier.isi | 000417426600002 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85041438057 | - |
dc.identifier.url | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8116977 | - |
dc.contributor.affiliation | Informatics and Computer Science | en_US |
dc.relation.isbn | 978-1-5386-3368-7 | en_US |
dc.description.rank | M33 | en_US |
dc.relation.firstpage | 13 | en_US |
dc.relation.lastpage | 19 | en_US |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.openairetype | Conference Paper | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Informatics and Computer Science | - |
crisitem.author.orcid | 0000-0002-8939-3589 | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.