Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2284
DC FieldValueLanguage
dc.contributor.authorTimčenko, Valentinaen_US
dc.contributor.authorGajin, Slavkoen_US
dc.date.accessioned2025-07-22T15:21:01Z-
dc.date.available2025-07-22T15:21:01Z-
dc.date.issued2017-11-21-
dc.identifier.isbn[9781538633687]-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2284-
dc.description.abstractThis paper focuses on the problem of machine learning classifier choice for network intrusion detection, taking into consideration several ensemble classifiers from the supervised learning category. We have evaluated Bagged trees, AdaBoost, RUSBoost, LogitBoost and GentleBoost algorithms, provided an analysis of the performance of the classifiers and compared their learning capabilities, taking for the reference UNSW-NB15 dataset. The obtained results have indicated that in the defined environment and under analyzed conditions Bagged tree and GentleBoost perform with highest accuracy and ROC values, while RUSBoost has the lowest performances.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectEnsemble classifieren_US
dc.subjectIntrusionen_US
dc.subjectNetwork anomaly detectionen_US
dc.subjectSupervised machine learningen_US
dc.titleEnsemble classifiers for supervised anomaly based network intrusion detectionen_US
dc.typeConference Paperen_US
dc.relation.conferenceIEEE Interntional Conference on Intelligent Computer Communication and Processing ICCP (13 ; 2017 ; Cluj-Napoca)en_US
dc.relation.publication13th IEEE International Conference on Intelligent Computer Communication and Processing (ICCP) : Proceedingsen_US
dc.identifier.doi10.1109/ICCP.2017.8116977-
dc.identifier.scopus2-s2.0-85041438057-
dc.identifier.isi000417426600002-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85041438057-
dc.identifier.urlhttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8116977-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.relation.isbn978-1-5386-3368-7en_US
dc.description.rankM33en_US
dc.relation.firstpage13en_US
dc.relation.lastpage19en_US
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeConference Paper-
item.cerifentitytypePublications-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.orcid0000-0002-8939-3589-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

37
checked on Aug 23, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.