Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2280
DC FieldValueLanguage
dc.contributor.authorJevtić, Miroljuben_US
dc.contributor.authorKarapetrović, Bobanen_US
dc.date.accessioned2025-07-22T14:11:16Z-
dc.date.available2025-07-22T14:11:16Z-
dc.date.issued2017-09-01-
dc.identifier.issn0022247X-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2280-
dc.description.abstractIt is well known (see [8,14]) that the Libera operator L is bounded on the Besov space H<inf>ν</inf><sup>p,q,α</sup> if and only if 0<κ<inf>p,α,ν</inf>:=ν−α−1/p+1. We prove unexpected results: the Hilbert matrix operator H, as well as the modified Hilbert operator H˜, is bounded on H<inf>ν</inf><sup>p,q,α</sup> if and only if 0<κ<inf>p,α,ν</inf><1. In particular, H, as well as H˜, is bounded on the Bergman space A<sup>p,α</sup> if and only if 1<α+2<p and is bounded on the Dirichlet space D<inf>α</inf><sup>p</sup>=A<inf>1</inf><sup>p,α</sup> if and only if max⁡{−1,p−2}<α<2p−2. Our results are substantial improvement of [11, Theorem 3.1] and of [6, Theorem 5].en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Mathematical Analysis and Applicationsen_US
dc.subjectBergman-type spacesen_US
dc.subjectHilbert matrix operatoren_US
dc.titleHilbert matrix on spaces of Bergman-typeen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jmaa.2017.04.002-
dc.identifier.scopus2-s2.0-85017099925-
dc.identifier.isi000401782800016-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85017099925-
dc.contributor.affiliationReal and Complex Analysisen_US
dc.relation.issn0022-247Xen_US
dc.description.rankM21en_US
dc.relation.firstpage241en_US
dc.relation.lastpage254en_US
dc.relation.volume453en_US
dc.relation.issue1en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptReal and Complex Analysis-
crisitem.author.orcid0000-0001-5296-8070-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

22
checked on Jul 22, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.