Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2275
DC FieldValueLanguage
dc.contributor.authorNikolić, Jovanaen_US
dc.date.accessioned2025-07-22T12:04:06Z-
dc.date.available2025-07-22T12:04:06Z-
dc.date.issued2017-01-01-
dc.identifier.issn03501302-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2275-
dc.description.abstractWe give a construction of the Piunikhin-Salamon-Schwarz isomorphism between the Morse homology and the Floer homology generated by Hamiltonian orbits starting at the zero section and ending at the conormal bundle. We also prove that this isomorphism is natural in the sense that it commutes with the isomorphisms between the Morse homology for different choices of the Morse function and the Floer homology for different choices of the Hamiltonian. We define a product on the Floer homology and prove triangle inequality for conormal spectral invariants with respect to this product.en_US
dc.language.isoenen_US
dc.publisherBeograd : Matematički institut SANUen_US
dc.relation.ispartofPublications de l'Institut Mathematiqueen_US
dc.subjectConormal bundleen_US
dc.subjectFloer homologyen_US
dc.subjectHomology producten_US
dc.subjectSpectral invariantsen_US
dc.titlePiunikhin-Salamon-Schwarz isomorphisms and spectral invariants for conormal bundleen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/PIM1716017D-
dc.identifier.scopus2-s2.0-85032890398-
dc.identifier.isi000416484100002-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85032890398-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.issn0350-1302en_US
dc.description.rankM24en_US
dc.relation.firstpage17en_US
dc.relation.lastpage47en_US
dc.relation.volume102en_US
dc.relation.issue116en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0001-7696-2554-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

4
checked on Jul 22, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.