Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/225
DC FieldValueLanguage
dc.contributor.authorBokan, Nedaen_US
dc.contributor.authorŠukilović, Tijanaen_US
dc.contributor.authorVukmirović, Srđanen_US
dc.date.accessioned2022-08-06T17:30:51Z-
dc.date.available2022-08-06T17:30:51Z-
dc.date.issued2015-08-25-
dc.identifier.issn00465755en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/225-
dc.description.abstractIn the present work we classify, up to automorphism, left invariant Lorentz metrics on 4-dimensional nilpotent Lie groups 123R and $$G_4$$G4. We investigate their geometry, especially holonomy groups and decomposability of these metrics. Finally, we find projective classes of the metrics and prove all of these metrics are also left invariant.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofGeometriae Dedicataen_US
dc.subjectGeodesically equivalent metricsen_US
dc.subjectHolonomy groupen_US
dc.subjectNilpotent groupen_US
dc.titleLorentz geometry of 4-dimensional nilpotent Lie groupsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10711-014-9980-4-
dc.identifier.scopus2-s2.0-84937966038-
dc.identifier.isi000358252200007-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84937966038-
dc.contributor.affiliationGeometryen_US
dc.contributor.affiliationGeometryen_US
dc.relation.issn0046-5755en_US
dc.description.rankM22en_US
dc.relation.firstpage83en_US
dc.relation.lastpage102en_US
dc.relation.volume177en_US
dc.relation.issue1en_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.deptGeometry-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-5135-869X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

20
checked on Nov 24, 2025

Page view(s)

12
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.