Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/225
DC FieldValueLanguage
dc.contributor.authorBokan, Nedaen_US
dc.contributor.authorŠukilović, Tijanaen_US
dc.contributor.authorVukmirović, Srđanen_US
dc.date.accessioned2022-08-06T17:30:51Z-
dc.date.available2022-08-06T17:30:51Z-
dc.date.issued2015-08-25-
dc.identifier.issn00465755en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/225-
dc.description.abstractIn the present work we classify, up to automorphism, left invariant Lorentz metrics on 4-dimensional nilpotent Lie groups 123R and $$G_4$$G4. We investigate their geometry, especially holonomy groups and decomposability of these metrics. Finally, we find projective classes of the metrics and prove all of these metrics are also left invariant.en
dc.relation.ispartofGeometriae Dedicataen
dc.subjectGeodesically equivalent metricsen
dc.subjectHolonomy groupen
dc.subjectNilpotent groupen
dc.titleLorentz geometry of 4-dimensional nilpotent Lie groupsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10711-014-9980-4-
dc.identifier.scopus2-s2.0-84937966038-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84937966038-
dc.contributor.affiliationGeometryen_US
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage83en
dc.relation.lastpage102en
dc.relation.volume177en
dc.relation.issue1en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-5135-869X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

16
checked on Nov 9, 2024

Page view(s)

11
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.