Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2249
DC FieldValueLanguage
dc.contributor.authorGrujić, Vladimiren_US
dc.contributor.authorStojadinović, Tanjaen_US
dc.date.accessioned2025-07-18T15:35:54Z-
dc.date.available2025-07-18T15:35:54Z-
dc.date.issued2017-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2249-
dc.description.abstractA new algebraic formula for the numbers of faces of nestohedra is obtained. The enumerator function F(PB) of positive lattice points in interiors of maximal cones of the normal fan of the nestohedron PB associated to a building set B is described as a morphism from the certain combinatorial Hopf algebra of building sets to quasisymmetric functions. We define the q-analog Fq(PB) and derive its determining recurrence relations. The f -polynomial of the nestohedron PB appears as the principal specialization of the quasisymmetric function Fq(PB).en_US
dc.language.isoenen_US
dc.publisherLondon : Quin Marry Universityen_US
dc.subjectcombinatorial Hopf algebraen_US
dc.subjectF-polynomialen_US
dc.subjectNestohedraen_US
dc.titleCounting Faces of Nestohedraen_US
dc.typeConference Objecten_US
dc.relation.conferenceConference on Formal Power Series and Algebraic Combinatorics FPSAC'17 (29 ; 2017 ; London)en_US
dc.relation.publicationSeminar Lotharingien de Combinatoire, Proceedings of the 29th Conference on Formal Power Series and Algebraic Combinatoricsen_US
dc.identifier.urlhttps://www.mat.univie.ac.at/~slc/wpapers/FPSAC2017/17%20Grujic%20Stojadinovic.pdf-
dc.contributor.affiliationTopologyen_US
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.description.rankM33en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptTopology-
crisitem.author.orcid0000-0002-2306-2891-
crisitem.author.orcid0000-0002-5948-7912-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.