Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/220
DC FieldValueLanguage
dc.contributor.authorDiot, Emilieen_US
dc.contributor.authorRadovanović, Markoen_US
dc.contributor.authorTrotignon, Nicolasen_US
dc.contributor.authorVušković, Kristinaen_US
dc.date.accessioned2022-08-06T17:23:28Z-
dc.date.available2022-08-06T17:23:28Z-
dc.date.issued2020-07-01-
dc.identifier.issn00958956en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/220-
dc.description.abstractTruemper configurations are four types of graphs (namely thetas, wheels, prisms and pyramids) that play an important role in the proof of several decomposition theorems for hereditary graph classes. In this paper, we prove two structure theorems: one for graphs with no thetas, wheels and prisms as induced subgraphs, and one for graphs with no thetas, wheels and pyramids as induced subgraphs. A consequence is a polynomial time recognition algorithms for these two classes. In Part II of this series we generalize these results to graphs with no thetas and wheels as induced subgraphs, and in Parts III and IV, using the obtained structure, we solve several optimization problems for these graphs.en
dc.relation.ispartofJournal of Combinatorial Theory. Series Ben
dc.subject2-Joinen
dc.subjectClique cutseten
dc.subjectDecompositionen
dc.subjectInduced subgraphen
dc.subjectRecognition algorithmen
dc.subjectStructure theoremen
dc.subjectTruemper configurationen
dc.titleThe (theta, wheel)-free graphs Part I: Only-prism and only-pyramid graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jctb.2017.12.004-
dc.identifier.scopus2-s2.0-85041617293-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85041617293-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.firstpage123en
dc.relation.lastpage147en
dc.relation.volume143en
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0002-6990-1793-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

7
checked on Dec 21, 2024

Page view(s)

10
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.