Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/217
DC FieldValueLanguage
dc.contributor.authorRadovanović, Markoen_US
dc.date.accessioned2022-08-06T17:23:28Z-
dc.date.available2022-08-06T17:23:28Z-
dc.date.issued2020-06-01-
dc.identifier.issn00114642en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/217-
dc.description.abstractWe prove that for any positive integers n1, n2,…, nk, there exists a real flag manifold F(1,…, 1, n1,n2, …, nk) with cup-length equal to its dimension. Additionally, we give a necessary condition that an arbitrary real flag manifold needs to satisfy in order to have cup-length equal to its dimension.en
dc.relation.ispartofCzechoslovak Mathematical Journalen
dc.subject14M15en
dc.subject55M30en
dc.subject57N65en
dc.subjectcup-lengthen
dc.subjectflag manifolden
dc.subjectLyusternik-Shnirel’man categoryen
dc.titleOn Real Flag Manifolds with Cup-Length Equal to Its Dimensionen_US
dc.typeArticleen_US
dc.identifier.doi10.21136/CMJ.2019.0283-18-
dc.identifier.scopus2-s2.0-85076599343-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85076599343-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.firstpage299en
dc.relation.lastpage310en
dc.relation.volume70en
dc.relation.issue2en
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0002-6990-1793-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

14
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.