Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2168
DC FieldValueLanguage
dc.contributor.authorBaralić, Djordjeen_US
dc.contributor.authorPetrić, Zoranen_US
dc.contributor.authorTelebaković Onić, Sonjaen_US
dc.date.accessioned2025-07-14T15:36:10Z-
dc.date.available2025-07-14T15:36:10Z-
dc.date.issued2018-07-18-
dc.identifier.issn1201561X-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2168-
dc.description.abstractFollowing the pattern of the Frobenius structure usually assigned to the 1-dimensional sphere, we investigate the Frobenius structures of spheres in all other dimensions. Starting from dimension d = 1, all the spheres are commutative Frobenius objects in categories whose arrows are (d + 1)-dimensional cobordisms. With respect to the language of Frobenius objects, there is no distinction between these spheres–they are all free of additional equations formulated in this language. The corresponding structure makes out of the 0-dimensional sphere not a commutative but a symmetric Frobenius object. This sphere is mapped to a matrix Frobenius algebra by a 1-dimensional topological quantum field theory, which corresponds to the representation of a class of diagrammatic algebras given by Richard Brauer.en_US
dc.language.isoenen_US
dc.publisherSackville : Mount Alison Universityen_US
dc.relation.ispartofTheory and Applications of Categoriesen_US
dc.subjectBrauerian representationen_US
dc.subjectCobordismen_US
dc.subjectCoherenceen_US
dc.subjectCommutative Frobenius objecten_US
dc.subjectNormal formen_US
dc.subjectOriented manifolden_US
dc.subjectSymmetric monoidal categoryen_US
dc.subjectTopological quantum field theoryen_US
dc.titleSpheres as Frobenius objectsen_US
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-85053728596-
dc.identifier.isi000509270800001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85053728596-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.issn1201 - 561Xen_US
dc.description.rankM23en_US
dc.relation.firstpage691en_US
dc.relation.lastpage726en_US
dc.relation.volume33en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0001-5448-028X-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Jul 22, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.