Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2166
DC FieldValueLanguage
dc.contributor.authorKarapetrović, Bobanen_US
dc.date.accessioned2025-07-14T14:38:44Z-
dc.date.available2025-07-14T14:38:44Z-
dc.date.issued2018-06-01-
dc.identifier.issn00114642-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2166-
dc.description.abstractWe show that if α > 1, then the logarithmically weighted Bergman space Alogα2 is mapped by the Libera operator L into the space Alogα−12, while if α > 2 and 0 < ε ≤ α−2, then the Hilbert matrix operator H maps Alogα2 into Alogα−2−ε2. We show that the Libera operator L maps the logarithmically weighted Bloch space Blogα, α ∈ R, into itself, while H maps Blogα into Blogα+1. In Pavlović’s paper (2016) it is shown that L maps the logarithmically weighted Hardy-Bloch space Blogα1, α > 0, into Blogα−11. We show that this result is sharp. We also show that H maps Blogα1, α > 0, into Blogα−11 and that this result is sharp also.en_US
dc.language.isoenen_US
dc.publisherPrague : Institute of Mathematics of the Czech Academy of Scienceen_US
dc.relation.ispartofCzechoslovak Mathematical Journalen_US
dc.subject30H25en_US
dc.subject47B38en_US
dc.subject47G10en_US
dc.subjectBergman spaceen_US
dc.subjectBloch spaceen_US
dc.subjectHardy spaceen_US
dc.subjectHardy-Bloch spaceen_US
dc.subjectHilbert matrix operatoren_US
dc.subjectLibera operatoren_US
dc.titleLibera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spacesen_US
dc.typeArticleen_US
dc.identifier.doi10.21136/CMJ.2018.0555-16-
dc.identifier.scopus2-s2.0-85045051078-
dc.identifier.isi000436570400017-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85045051078-
dc.relation.issn0011-4642en_US
dc.description.rankM23en_US
dc.relation.firstpage559en_US
dc.relation.lastpage576en_US
dc.relation.volume68en_US
dc.relation.issue2en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptReal and Complex Analysis-
crisitem.author.orcid0000-0001-5296-8070-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

4
checked on Jul 23, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.