Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/215
DC FieldValueLanguage
dc.contributor.authorRadovanović, Markoen_US
dc.contributor.authorVuškovic̈, Kristinaen_US
dc.date.accessioned2022-08-06T17:23:28Z-
dc.date.available2022-08-06T17:23:28Z-
dc.date.issued2013-04-01-
dc.identifier.issn03649024en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/215-
dc.description.abstractThe chromatic number of a triangle-free graph can be arbitrarily large. In this article, we show that if all subdivisions of K2, 3 are also excluded as induced subgraphs, then the chromatic number becomes bounded by 3. We give a structural characterization of this class of graphs, from which we derive an O(nm) coloring algorithm, where n denotes the number of vertices and m the number of edges of the input graph. © 2012 Wiley Periodicals, Inc.en
dc.relation.ispartofJournal of Graph Theoryen
dc.subjectclique cutsetsen
dc.subjectcoloringen
dc.subjectdecompositionen
dc.subjectstar cutsetsen
dc.subjecttriangle-free graphsen
dc.titleA class of three-colorable triangle-free graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/jgt.21651-
dc.identifier.scopus2-s2.0-84873737345-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84873737345-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.firstpage430en
dc.relation.lastpage439en
dc.relation.volume72en
dc.relation.issue4en
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0002-6990-1793-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

6
checked on Dec 19, 2024

Page view(s)

12
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.