Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/214
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Radovanović, Marko | en_US |
dc.date.accessioned | 2022-08-06T17:23:28Z | - |
dc.date.available | 2022-08-06T17:23:28Z | - |
dc.date.issued | 2016-10-01 | - |
dc.identifier.issn | 01399918 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/214 | - |
dc.description.abstract | The mod 2 cohomology of the real flag manifolds is known to be isomorphic to a polynomial algebra modulo a certain ideal. In this paper reduced Gröbner bases for these ideals are obtained in the case of manifolds F(1, ⋯, 1, 2, ⋯, 2, n). As an application of this result, the appropriate Stiefel-Whitney classes are calculated and some new non-embedding and non-immersion theorems for some manifolds of this type are obtained. | en |
dc.relation.ispartof | Mathematica Slovaca | en |
dc.subject | embedding | en |
dc.subject | flag manifold | en |
dc.subject | Gröbner bases | en |
dc.subject | immersion | en |
dc.subject | Stiefel-Whitney classes | en |
dc.title | Gröbner bases for some flag manifolds and applications | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1515/ms-2016-0204 | - |
dc.identifier.scopus | 2-s2.0-85011298628 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85011298628 | - |
dc.contributor.affiliation | Algebra and Mathematical Logic | en_US |
dc.relation.firstpage | 1065 | en |
dc.relation.lastpage | 1082 | en |
dc.relation.volume | 66 | en |
dc.relation.issue | 5 | en |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
crisitem.author.dept | Algebra and Mathematical Logic | - |
crisitem.author.orcid | 0000-0002-6990-1793 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
2
checked on Dec 20, 2024
Page view(s)
14
checked on Dec 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.