Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/214
DC FieldValueLanguage
dc.contributor.authorRadovanović, Markoen_US
dc.date.accessioned2022-08-06T17:23:28Z-
dc.date.available2022-08-06T17:23:28Z-
dc.date.issued2016-10-01-
dc.identifier.issn01399918en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/214-
dc.description.abstractThe mod 2 cohomology of the real flag manifolds is known to be isomorphic to a polynomial algebra modulo a certain ideal. In this paper reduced Gröbner bases for these ideals are obtained in the case of manifolds F(1, ⋯, 1, 2, ⋯, 2, n). As an application of this result, the appropriate Stiefel-Whitney classes are calculated and some new non-embedding and non-immersion theorems for some manifolds of this type are obtained.en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.relation.ispartofMathematica Slovacaen_US
dc.subjectembeddingen_US
dc.subjectflag manifolden_US
dc.subjectGröbner basesen_US
dc.subjectimmersionen_US
dc.subjectStiefel-Whitney classesen_US
dc.titleGröbner bases for some flag manifolds and applicationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1515/ms-2016-0204-
dc.identifier.scopus2-s2.0-85011298628-
dc.identifier.isi000393122500005-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85011298628-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.issn0139-9918en_US
dc.description.rankM23en_US
dc.relation.firstpage1065en_US
dc.relation.lastpage1082en_US
dc.relation.volume66en_US
dc.relation.issue5en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0002-6990-1793-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Oct 1, 2025

Page view(s)

14
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.