Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2146
DC FieldValueLanguage
dc.contributor.authorTimčenko, Valentinaen_US
dc.contributor.authorGajin, Slavkoen_US
dc.date.accessioned2025-07-11T13:46:26Z-
dc.date.available2025-07-11T13:46:26Z-
dc.date.issued2018-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2146-
dc.description.abstractThis paper focuses on the problem of providing security measures, anomaly detection, and prevention to the emerging IoT environment. We have considered several different categories of machine learning classification algorithms with a goal to estimate the proper choice for network anomaly detection in IoT like environments. The special focus is on SVM and the set of bagging and boosting algorithms, the analysis of their performance and further comparison taking for the reference the modern, IoT like, UNSW-NB15 dataset.en_US
dc.language.isoenen_US
dc.publisherBelgrade : Information Society of Serbiaen_US
dc.titleMachine Learning based Network Anomaly Detection for IoT environmentsen_US
dc.typeConference Objecten_US
dc.relation.conferenceInternational Conference on Information Society and Technology ICIST 2018 (8 ; 2018 ; Kopaonik)en_US
dc.relation.publicationProceedings of the 8th International Conference on Information Society and Technology ICIST 2018en_US
dc.identifier.urlhttps://www.eventiotic.com/eventiotic/library/paper/410-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.relation.isbn978-86-85525-22-3en_US
dc.description.rankM33en_US
dc.relation.firstpage196en_US
dc.relation.lastpage201en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.orcid0000-0002-8939-3589-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.