Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2139
DC FieldValueLanguage
dc.contributor.authorMoconja, Slavkoen_US
dc.contributor.authorTanović, Predragen_US
dc.date.accessioned2025-07-10T07:44:32Z-
dc.date.available2025-07-10T07:44:32Z-
dc.date.issued2025-08-01-
dc.identifier.issn01680072-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2139-
dc.description.abstractWe introduce and study weak o-minimality in the context of complete types in an arbitrary first-order theory. A type p∈S(A) is weakly o-minimal if for some relatively A-definable linear order, <, on p(C) every relatively L<inf>C</inf>-definable subset of p(C) has finitely many convex components in (p(C),<). We establish many nice properties of weakly o-minimal types. For example, we prove that weakly o-minimal types are dp-minimal and share several properties of weight-one types in stable theories, and that a version of monotonicity theorem holds for relatively definable functions on the locus of a weakly o-minimal type.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofAnnals of Pure and Applied Logicen_US
dc.subjectdp ranken_US
dc.subjectForkingen_US
dc.subjectForking orthogonalityen_US
dc.subjectOrdered structureen_US
dc.subjectWeakly o-minimal typeen_US
dc.subjectWeakly orthogonal typesen_US
dc.titleWeakly o-minimal typesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.apal.2025.103605-
dc.identifier.scopus2-s2.0-105004445203-
dc.identifier.isi001512558900001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/105004445203-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.issn0168-0072en_US
dc.description.rankM22en_US
dc.relation.firstpageArticle no. 103605en_US
dc.relation.volume176en_US
dc.relation.issue9en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0003-4095-8830-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.