Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/20
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Antić, Miroslava | en_US |
dc.date.accessioned | 2022-08-06T14:49:08Z | - |
dc.date.available | 2022-08-06T14:49:08Z | - |
dc.date.issued | 2013-08-01 | - |
dc.identifier.issn | 00472468 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/20 | - |
dc.description.abstract | In this paper we define an involution of the hyperbolic plane corresponding to an equidistant curve and a point of its base line that keeps a certain subset of the equidistant curves invariant. Based on this mapping we present two models of the Euclidean geometry in the hyperbolic plane. © 2013 Springer Basel. | en |
dc.relation.ispartof | Journal of Geometry | en_US |
dc.subject | equidistant curve | en |
dc.subject | Hyperbolic plane | en |
dc.subject | involution | en |
dc.subject | model of Euclidean geometry | en |
dc.title | The equidistant involution of the hyperbolic plane and two models of the Euclidean plane geometry | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s00022-013-0161-7 | - |
dc.identifier.scopus | 2-s2.0-84887197999 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84887197999 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.firstpage | 201 | en_US |
dc.relation.lastpage | 212 | en_US |
dc.relation.volume | 104 | en_US |
dc.relation.issue | 2 | en_US |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
crisitem.author.orcid | 0000-0002-2111-7174 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
1
checked on Nov 9, 2024
Page view(s)
13
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.