Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/20
DC FieldValueLanguage
dc.contributor.authorAntić, Miroslavaen_US
dc.date.accessioned2022-08-06T14:49:08Z-
dc.date.available2022-08-06T14:49:08Z-
dc.date.issued2013-08-01-
dc.identifier.issn00472468en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/20-
dc.description.abstractIn this paper we define an involution of the hyperbolic plane corresponding to an equidistant curve and a point of its base line that keeps a certain subset of the equidistant curves invariant. Based on this mapping we present two models of the Euclidean geometry in the hyperbolic plane. © 2013 Springer Basel.en
dc.relation.ispartofJournal of Geometryen_US
dc.subjectequidistant curveen
dc.subjectHyperbolic planeen
dc.subjectinvolutionen
dc.subjectmodel of Euclidean geometryen
dc.titleThe equidistant involution of the hyperbolic plane and two models of the Euclidean plane geometryen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00022-013-0161-7-
dc.identifier.scopus2-s2.0-84887197999-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84887197999-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage201en_US
dc.relation.lastpage212en_US
dc.relation.volume104en_US
dc.relation.issue2en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-2111-7174-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 9, 2024

Page view(s)

13
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.