Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/209
DC FieldValueLanguage
dc.contributor.authorPucanović, Zoran S.en_US
dc.contributor.authorRadovanović, Markoen_US
dc.contributor.authorErić, Aleksandra L.J.en_US
dc.date.accessioned2022-08-06T17:23:27Z-
dc.date.available2022-08-06T17:23:27Z-
dc.date.issued2014-08-01-
dc.identifier.issn02194988en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/209-
dc.description.abstractTo each commutative ring R one can associate the graph G(R), called the intersection graph of ideals, whose vertices are nontrivial ideals of R. In this paper, we try to establish some connections between commutative ring theory and graph theory, by study of the genus of the intersection graph of ideals. We classify all graphs of genus 2 that are intersection graphs of ideals of some commutative rings and obtain some lower bounds for the genus of the intersection graph of ideals of a nonlocal commutative ring. © World Scientific Publishing Company.en
dc.relation.ispartofJournal of Algebra and its Applicationsen
dc.subjectCommutative ringsen
dc.subjectGraph embeddingsen
dc.subjectIntersection graphen
dc.titleOn the genus of the intersection graph of ideals of a commutative ringen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0219498813501557-
dc.identifier.scopus2-s2.0-84897607012-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84897607012-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.volume13en
dc.relation.issue5en
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0002-6990-1793-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

12
checked on Dec 20, 2024

Page view(s)

11
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.