Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/2088
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lazarević, Milan | en_US |
dc.date.accessioned | 2025-07-03T12:32:31Z | - |
dc.date.available | 2025-07-03T12:32:31Z | - |
dc.date.issued | 2019-01-01 | - |
dc.identifier.issn | 03545180 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/2088 | - |
dc.description.abstract | For a probability measure µ on Ω and square integrable (Hilbert space) operator valued functions (formula presented), we prove Grüss-Landau type operator inequality for inner product type transformers (formula presented) for all X ∈ B(H) and for all η ∈ [0, 1]. Let p ≥ 2, Φ to be a symmetrically norming (s.n.) function, Φ<sup>(p)</sup> to be its p-modification, Φ<sup>(p)</sup> <sup>∗</sup> is a s.n. function adjoint to Φ<sup>(p)</sup> and (formula presented) to be a norm on its associated ideal C<inf>Φ</inf> (p) ∗ (H) of compact operators. If (formula presented) is a sequence in (0, 1], such that(formula presented) for some families {A<inf>n</inf> }<sup>∞ and {B</sup>n=1 n}<sup>∞</sup>of bounded operators on Hilbert space H and for all f ∈ H, then (formula presented) if at least one of those operator families consists of mutually commuting normal operators. The related Grüss-Landau type (formula presented) norm inequalities for inner product type transformers are also provided. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Niš : Prirodno-matematički fakultet | en_US |
dc.relation.ispartof | Filomat | en_US |
dc.subject | P-modified norms and their dual norms | en_US |
dc.subject | Symmetrically norming functions | en_US |
dc.subject | Unitarily invariant norms | en_US |
dc.title | Grüss-Landau inequalities for elementary operators and inner product type transformers in q and q∗ norm ideals of compact operators | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.2298/FIL1908447L | - |
dc.identifier.scopus | 2-s2.0-85078313435 | - |
dc.identifier.isi | 000496946500022 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85078313435 | - |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.relation.issn | 0354-5180 | en_US |
dc.description.rank | M21 | en_US |
dc.relation.firstpage | 2447 | en_US |
dc.relation.lastpage | 2455 | en_US |
dc.relation.volume | 33 | en_US |
dc.relation.issue | 8 | en_US |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.author.dept | Mathematical Analysis | - |
crisitem.author.orcid | 0000-0003-1408-5626 | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.