Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/207
DC FieldValueLanguage
dc.contributor.authorAboulker, Pierreen_US
dc.contributor.authorRadovanović, Markoen_US
dc.contributor.authorTrotignon, Nicolasen_US
dc.contributor.authorTrunck, Théophileen_US
dc.contributor.authorVuškovic̈, Kristinaen_US
dc.date.accessioned2022-08-06T17:23:27Z-
dc.date.available2022-08-06T17:23:27Z-
dc.date.issued2014-01-01-
dc.identifier.issn03649024en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/207-
dc.description.abstractIn Math Program 55(1992), 129-168, Conforti and Rao conjectured that every balanced bipartite graph contains an edge that is not the unique chord of a cycle. We prove this conjecture for balanced bipartite graphs that do not contain a cycle of length 4 (also known as linear balanced bipartite graphs), and for balanced bipartite graphs whose maximum degree is at most 3. We in fact obtain results for more general classes, namely linear balanceable and subcubic balanceable graphs. Additionally, we prove that cubic balanced graphs contain a pair of twins, a result that was conjectured by Morris, Spiga, and Webb in (Discrete Math 310(2010), 3228-3235). © 2013 Wiley Periodicals, Inc.en
dc.relation.ispartofJournal of Graph Theoryen
dc.subjectbalanced and balanceable matrices and graphsen
dc.subjectdecompositionen
dc.subjectlinear balanced matricesen
dc.titleLinear balanceable and subcubic balanceable graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/jgt.21728-
dc.identifier.scopus2-s2.0-84889685163-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84889685163-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.firstpage150en
dc.relation.lastpage166en
dc.relation.volume75en
dc.relation.issue2en
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0002-6990-1793-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

13
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.