Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2077
DC FieldValueLanguage
dc.contributor.authorKratica, Jozefen_US
dc.contributor.authorFilipović, Vladimiren_US
dc.contributor.authorMatić, Draganen_US
dc.contributor.authorKartelj, Aleksandaren_US
dc.date.accessioned2025-07-02T12:05:28Z-
dc.date.available2025-07-02T12:05:28Z-
dc.date.issued2019-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2077-
dc.description.abstractDue to their importance in practice, dominating set problems in graphs have been greatly studied in past and different formulations of these problems are presented in literature. This paper's focus is on two problems: weakly convex dominating set problem (WCVXDSP) and convex dominating set problem (CVXDSP). It introduces two integer linear programming (ILP) formulation for CVXDSP and one ILP mode for WCVXDSP, as well as proof for equivalency between ILP models for CVXDSP. The proof of correctness for all introduced ILP formulations is provided by showing that optimal solution to the each ILP formulation is equal to the optimal solution of the original problem.en_US
dc.language.isoenen_US
dc.titleAn integer linear programming formulation for the convex dominating set problemsen_US
dc.typeTexten_US
dc.identifier.doi10.48550/arXiv.1904.02541-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeText-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.orcid0000-0002-5943-8037-
crisitem.author.orcid0000-0001-9839-6039-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.