Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2055
DC FieldValueLanguage
dc.contributor.authorStojanović-Ðurđević, Sanaen_US
dc.date.accessioned2025-05-17T14:53:50Z-
dc.date.available2025-05-17T14:53:50Z-
dc.date.issued2019-04-15-
dc.identifier.issn10122443-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2055-
dc.description.abstractIn this paper, we propose a new approach for automated verification of informal proofs in Euclidean geometry using a fragment of first-order logic called coherent logic and a corresponding proof representation. We use a TPTP inspired language to write a semi-formal proof of a theorem, that fairly accurately depicts a proof that can be found in mathematical textbooks. The semi-formal proof is verified by generating more detailed proof objects expressed in the coherent logic vernacular. Those proof objects can be easily transformed to Isabelle and Coq proof objects, and also in natural language proofs written in English and Serbian. This approach is tested on two sets of theorem proofs using classical axiomatic system for Euclidean geometry created by David Hilbert, and a modern axiomatic system E created by Jeremy Avigad, Edward Dean, and John Mumma.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofAnnals of Mathematics and Artificial Intelligenceen_US
dc.subjectAutomated theorem provingen_US
dc.subjectCoherent logicen_US
dc.subjectEuclidean geometryen_US
dc.subjectInformal proofsen_US
dc.subjectInteractive theorem provingen_US
dc.titleFrom informal to formal proofs in Euclidean geometryen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10472-018-9597-7-
dc.identifier.scopus2-s2.0-85053241378-
dc.identifier.isi000459336900003-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85053241378-
dc.relation.issn1012-2443en_US
dc.description.rankM22en_US
dc.relation.firstpage89en_US
dc.relation.lastpage117en_US
dc.relation.volume85en_US
dc.relation.issue2-4en_US
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

3
checked on Jun 11, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.