Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/2041
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Svetlik, Marek | en_US |
dc.date.accessioned | 2025-05-15T15:14:22Z | - |
dc.date.available | 2025-05-15T15:14:22Z | - |
dc.date.issued | 2020-01-01 | - |
dc.identifier.issn | 03545180 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/2041 | - |
dc.description.abstract | In this note we consider some generalizations of the Schwarz lemma for harmonic functions on the unit disk, whereby values of such functions and the norms of their differentials at the point z = 0 are given. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Niš : Prirodno-matematički fakultet | en_US |
dc.relation.ispartof | Filomat | en_US |
dc.subject | Harmonic functions | en_US |
dc.subject | The Schwarz lemma | en_US |
dc.subject | The Schwarz-Pick lemma | en_US |
dc.title | A note on the Schwarz lemma for harmonic functions | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.2298/FIL2011711S | - |
dc.identifier.scopus | 2-s2.0-85099995052 | - |
dc.identifier.isi | 000639385500015 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85099995052 | - |
dc.contributor.affiliation | Real and Complex Analysis | en_US |
dc.relation.issn | 0354-5180 | en_US |
dc.description.rank | M22 | en_US |
dc.relation.firstpage | 3711 | en_US |
dc.relation.lastpage | 3720 | en_US |
dc.relation.volume | 34 | en_US |
dc.relation.issue | 11 | en_US |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
crisitem.author.dept | Real and Complex Analysis | - |
crisitem.author.orcid | 0009-0005-0213-2167 | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.