Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2025
DC FieldValueLanguage
dc.contributor.authorTimčenko, Valentinaen_US
dc.contributor.authorGajin, Slavkoen_US
dc.date.accessioned2025-05-14T08:18:15Z-
dc.date.available2025-05-14T08:18:15Z-
dc.date.issued2020-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2025-
dc.description.abstractIn this paper, the focus of the research is on the comprehensive flow-based anomaly detection architecture which is based on the joint use of the entropy calculation and machine learning algorithms, and its enhancement with time-series techniques. The proposed solution is evaluated with the modified CTU-13 dataset, which includes instances of normal, background and botnet traffic. The analysis encompasses a range of unsupervised machine learning algorithms, time-series and entropy threshold analysis with different configuration parameters.en_US
dc.language.isoenen_US
dc.publisherInformation Society of Serbia - ISOSen_US
dc.titleTime-series entropy data clustering for effective anomaly detectionen_US
dc.typeConference Objecten_US
dc.relation.conferenceInternational Conference on Information Society and Technology ICIST(10 ; 2020 ; Belgrade)en_US
dc.relation.publication10th International Conference on Information Society and Technology ICIST 2020en_US
dc.relation.isbn978-86-85525-24-7en_US
dc.description.rankM33en_US
dc.relation.firstpage170en_US
dc.relation.lastpage175en_US
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-8939-3589-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.