Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2011
DC FieldValueLanguage
dc.contributor.authorMateljević, Miodragen_US
dc.contributor.authorSvetlik, Mareken_US
dc.date.accessioned2025-05-12T09:35:48Z-
dc.date.available2025-05-12T09:35:48Z-
dc.date.issued2020-04-01-
dc.identifier.issn14528630-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2011-
dc.description.abstractWe give simple proofs of various versions of the Schwarz lemma for real valued harmonic functions and for holomorphic (more generally harmonic quasiregular, shortly HQR) mappings with the strip codomain. Along the way, we get a simple proof of a new version of the Schwarz lemma for real valued harmonic functions (without the assumption that 0 is mapped to 0 by the corresponding map). Using the Schwarz-Pick lemma related to distortion for harmonic functions and the elementary properties of the hyperbolic geometry of the strip we get optimal estimates for modulus of HQR mappings.en_US
dc.language.isoenen_US
dc.publisherBeograd : Elektrotehnički fakulteten_US
dc.relation.ispartofApplicable Analysis and Discrete Mathematicsen_US
dc.subjectHarmonic functionsen_US
dc.subjectHolomorphic and quasiregular mapsen_US
dc.subjectHyperbolic metric on the stripen_US
dc.subjectSchwarz lemmaen_US
dc.subjectSchwarz-Pick lemmaen_US
dc.titleHyperbolic metric on the strip and the Schwarz lemma for HQR mappingsen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/AADM200104001M-
dc.identifier.scopus2-s2.0-85086411829-
dc.identifier.isi000530043000009-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85086411829-
dc.contributor.affiliationReal and Complex Analysisen_US
dc.relation.issn1452-8630en_US
dc.description.rankM21en_US
dc.relation.firstpage150en_US
dc.relation.lastpage168en_US
dc.relation.volume14en_US
dc.relation.issue1en_US
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.deptReal and Complex Analysis-
crisitem.author.orcid0009-0005-0213-2167-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

26
checked on May 12, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.