Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/200
Title: On maximality of the cup-length of flag manifolds
Authors: Petrović, Zoran 
Prvulović, Branislav 
Radovanović, Marko 
Affiliations: Algebra and Mathematical Logic 
Topology 
Algebra and Mathematical Logic 
Keywords: cup-length;flag manifold;Lyusternik-Shnirel’man category;Stiefel–Whitney class
Issue Date: 1-Aug-2016
Rank: M22
Journal: Acta Mathematica Hungarica
Abstract: 
We investigate which real flag manifolds of the form F(1,…,1,2,…,2,m)have the Z2-cup-length equal to the dimension. We obtain a complete classification of such manifolds of the form F(1 , … , 1 , 2 , m) and F(1 , … , 1 , 2 , 2 , m). Additionally, we provide an infinite family of manifolds F(1 , … , 1 , 2 , … , 2 , m) which give the negative answer to a question from J. Korbaš and J. Lörinc [5].
URI: https://research.matf.bg.ac.rs/handle/123456789/200
ISSN: 02365294
DOI: 10.1007/s10474-016-0625-y
Appears in Collections:Research outputs

Show full item record

SCOPUSTM   
Citations

2
checked on Apr 1, 2025

Page view(s)

19
checked on Jan 19, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.