Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/200
Title: On maximality of the cup-length of flag manifolds
Authors: Petrović, Zoran 
Prvulović, Branislav 
Radovanović, Marko 
Affiliations: Algebra and Mathematical Logic 
Topology 
Algebra and Mathematical Logic 
Keywords: cup-length;flag manifold;Lyusternik-Shnirel’man category;Stiefel–Whitney class
Issue Date: 1-Aug-2016
Journal: Acta Mathematica Hungarica
Abstract: 
We investigate which real flag manifolds of the form F(1,…,1,2,…,2,m)have the Z2-cup-length equal to the dimension. We obtain a complete classification of such manifolds of the form F(1 , … , 1 , 2 , m) and F(1 , … , 1 , 2 , 2 , m). Additionally, we provide an infinite family of manifolds F(1 , … , 1 , 2 , … , 2 , m) which give the negative answer to a question from J. Korbaš and J. Lörinc [5].
URI: https://research.matf.bg.ac.rs/handle/123456789/200
ISSN: 02365294
DOI: 10.1007/s10474-016-0625-y
Appears in Collections:Research outputs

Show full item record

SCOPUSTM   
Citations

2
checked on Dec 20, 2024

Page view(s)

19
checked on Dec 25, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.