Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/2006
DC FieldValueLanguage
dc.contributor.authorMarković, Jelenaen_US
dc.contributor.authorMarić, Filipen_US
dc.date.accessioned2025-05-09T06:41:51Z-
dc.date.available2025-05-09T06:41:51Z-
dc.date.issued2025-01-01-
dc.identifier.issn10122443-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/2006-
dc.description.abstractIn this paper, we present an Isabelle/HOL formalization of noncommutative and nonassociative algebraic structures known as gyrogroups and gyrovector spaces. These concepts were introduced by Abraham A. Ungar and have deep connections to hyperbolic geometry and special relativity. Gyrovector spaces can be used to define models of hyperbolic geometry. Unlike other models, gyrovector spaces offer the advantage that all definitions exhibit remarkable syntactical similarities to standard Euclidean and Cartesian geometry (e.g., points on the line between a and b satisfy the parametric equation a⊕t⊗(⊖a⊕b), for t∈R, while the hyperbolic Pythagorean theorem is expressed as a2⊕b2=c2, where ⊗, ⊕, and ⊖ represent gyro operations). We begin by formally defining gyrogroups and gyrovector spaces and proving their numerous properties. Next, we formalize Möbius and Einstein models of these abstract structures (formulated in the two-dimensional, complex plane), and then demonstrate that these are equivalent to the Poincaré and Klein-Beltrami models, satisfying Tarski’s geometry axioms for hyperbolic geometry.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofAnnals of Mathematics and Artificial Intelligenceen_US
dc.subjectGyrogroupen_US
dc.subjectGyrovector spaceen_US
dc.subjectHyperbolic geometryen_US
dc.subjectMöbius gyrovector spaceen_US
dc.subjectPoincaré Discen_US
dc.subjectTheory of relativityen_US
dc.titleFormalization of gyrovector spaces as models of hyperbolic geometry and special relativityen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10472-025-09979-5-
dc.identifier.scopus2-s2.0-105003586183-
dc.identifier.isi001476149900001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/105003586183-
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.contributor.affiliationInformatics and Computer Scienceen_US
dc.relation.issn1012-2443en_US
dc.description.rankM22en_US
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.deptInformatics and Computer Science-
crisitem.author.orcid0009-0007-4797-2666-
crisitem.author.orcid0000-0001-7219-6960-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.