Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/19
DC FieldValueLanguage
dc.contributor.authorAntić, Miroslavaen_US
dc.contributor.authorLi, Haizhongen_US
dc.contributor.authorVrancken, Lucen_US
dc.contributor.authorWang, Xianfengen_US
dc.date.accessioned2022-08-06T14:49:08Z-
dc.date.available2022-08-06T14:49:08Z-
dc.date.issued2021-01-01-
dc.identifier.issn00308730en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/19-
dc.description.abstractWe use a new approach to study locally strongly convex hypersurfaces with constant sectional curvature in the affine space (Formula presented). We prove a nice relation involving the eigenvalues of the shape operator S and the difference tensor K of the affine hypersurface. This is achieved by making full use of the Codazzi equations for both the shape operator and the difference tensor and the Ricci identity in an indirect way. Starting from this relation, we give a classification of locally strongly convex hypersurface with constant sectional curvature whose shape operator S has at most one eigenvalue of multiplicity one.en_US
dc.relation.ispartofPacific Journal of Mathematicsen_US
dc.subjectaffine hypersphereen_US
dc.subjectaffine hypersurfaceen_US
dc.subjectaffine metricen_US
dc.subjectconstant sectional curvatureen_US
dc.titleAffine hypersurfaces with constant sectional curvatureen_US
dc.typeArticleen_US
dc.identifier.doi10.2140/pjm.2021.310.275-
dc.identifier.scopus2-s2.0-85103110014-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85103110014-
dc.contributor.affiliationGeometryen_US
dc.description.rankM23en_US
dc.relation.firstpage275en_US
dc.relation.lastpage302en_US
dc.relation.volume310en_US
dc.relation.issue2en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-2111-7174-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

19
checked on Nov 10, 2024

Page view(s)

33
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.