Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1997
DC FieldValueLanguage
dc.contributor.authorKnežević, Miljanen_US
dc.date.accessioned2025-05-05T06:35:37Z-
dc.date.available2025-05-05T06:35:37Z-
dc.date.issued2025-01-01-
dc.identifier.issn03545180-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1997-
dc.description.abstractThe main result of this paper is a generalized Schwarz-Pick type inequality for ordinary harmonic quasiconformal mappings of the unit disk onto arbitrary simply connected domains in the complex plane. This result extends some of our earlier findings, as well as those presented in the excellent article [2]. Additionally, by analyzing the properties of the hyperbolic metric on simply connected hyperbolic domains in the complex plane, we establish the co-Lipschitz continuity of these mappings and determine the corresponding bi-Lipschitz constant with respect to the hyperbolic metric.en_US
dc.language.isoenen_US
dc.publisherNiš : Prirodno-matematički fakulteten_US
dc.relation.ispartofFilomaten_US
dc.subjectGaussian curvatureen_US
dc.subjectHarmonic mappingsen_US
dc.subjectHyperbolic metricsen_US
dc.subjectQuasiconformal mappingsen_US
dc.titleSome remarks on generalized Schwarz-Pick type inequality for harmonic quasiconformal mappings with simply connected rangesen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/FIL2507133K-
dc.identifier.scopus2-s2.0-105000439783-
dc.identifier.isi001469415700003-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/105000439783-
dc.contributor.affiliationReal and Complex Analysisen_US
dc.relation.issn0354-5180en_US
dc.description.rankM22en_US
dc.relation.firstpage2133en_US
dc.relation.lastpage2140en_US
dc.relation.volume39en_US
dc.relation.issue7en_US
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.deptReal and Complex Analysis-
crisitem.author.orcid0009-0000-4055-1227-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.