Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/198
DC FieldValueLanguage
dc.contributor.authorPetrović, Zoranen_US
dc.contributor.authorRoslavcev, Majaen_US
dc.date.accessioned2022-08-06T17:08:48Z-
dc.date.available2022-08-06T17:08:48Z-
dc.date.issued2022-
dc.identifier.issn14528630en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/198-
dc.description.abstractLet R be a commutative von Neumann regular ring. We show that every finitely generated ideal I in the ring of polynomials R[X] has a strong Gröbner basis. We prove this result using only the defining property of a von Neumann regular ringen
dc.relation.ispartofApplicable Analysis and Discrete Mathematicsen
dc.subjectGröbner basesen
dc.subjectVon neumann regular ringen
dc.titleCommutative Von Neumann Regular Rings are 1-Gröbneren_US
dc.typeArticleen_US
dc.identifier.doi10.2298/AADM210419030P-
dc.identifier.scopus2-s2.0-85129854488-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85129854488-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.firstpage178en
dc.relation.lastpage188en
dc.relation.volume16en
dc.relation.issue1en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0002-8571-5210-
crisitem.author.orcid0000-0002-6545-421X-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

20
checked on Nov 13, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.