Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/198
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Petrović, Zoran | en_US |
dc.contributor.author | Roslavcev, Maja | en_US |
dc.date.accessioned | 2022-08-06T17:08:48Z | - |
dc.date.available | 2022-08-06T17:08:48Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 14528630 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/198 | - |
dc.description.abstract | Let R be a commutative von Neumann regular ring. We show that every finitely generated ideal I in the ring of polynomials R[X] has a strong Gröbner basis. We prove this result using only the defining property of a von Neumann regular ring | en |
dc.relation.ispartof | Applicable Analysis and Discrete Mathematics | en |
dc.subject | Gröbner bases | en |
dc.subject | Von neumann regular ring | en |
dc.title | Commutative Von Neumann Regular Rings are 1-Gröbner | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.2298/AADM210419030P | - |
dc.identifier.scopus | 2-s2.0-85129854488 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85129854488 | - |
dc.contributor.affiliation | Algebra and Mathematical Logic | en_US |
dc.contributor.affiliation | Algebra and Mathematical Logic | en_US |
dc.relation.firstpage | 178 | en |
dc.relation.lastpage | 188 | en |
dc.relation.volume | 16 | en |
dc.relation.issue | 1 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Algebra and Mathematical Logic | - |
crisitem.author.dept | Algebra and Mathematical Logic | - |
crisitem.author.orcid | 0000-0002-8571-5210 | - |
crisitem.author.orcid | 0000-0002-6545-421X | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.