Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1977
DC FieldValueLanguage
dc.contributor.authorVrećica, Ilijaen_US
dc.date.accessioned2025-04-25T10:04:53Z-
dc.date.available2025-04-25T10:04:53Z-
dc.date.issued2023-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1977-
dc.description.abstractFirst part of dissertation examines sumsets hA = {a1 + · · · + ah ∈ Zd : a1, . . . , ah ∈ A}, where A is a finite set in Zd. It is known that there exists a constant h0 ∈ N and a polynomial pA(X) such that pA(h) = |hA| for h ⩾ h0. However, little is known of polynomial pA and constant h0. Cone CA over the set A contains information about hA, for all h ∈ N. When A has d + 2 elements, polynomial pA and constant h0 can be explicitly described. When A has d + 3 elements, an upper bound is found for the number of elements of hA. Second part of dissertation examines Selmer groups of elliptic curves in the congruent number family. A squarefree natural number is congruent if and only if there exists a right triangle with area n whose sides all have integer lengths. It is known that n is a congruent number if and only if elliptic curve En : y2 = x3 − n2x has nonzero rank as an algebraic group. Selmer groups of isogenies on En are interesting, because their rank is not smaller than the rank of En, so when the Selmer groups have rank zero, then the elliptic curve En also has rank zero. Elements of these Selmer groups can be represented as partitions of a particular graph, from which one may find the distribution of ranks of Selmer groups.en_US
dc.language.isootheren_US
dc.publisherBeograd : Matematički fakulteten_US
dc.subjectsimplicial complexesen_US
dc.subjectsumsetsen_US
dc.subjecteliptic curvesen_US
dc.subjectSelmer groupen_US
dc.subjectcongruent numbersen_US
dc.subjectGraph theoryen_US
dc.subjectTate-Shafarevich groupen_US
dc.subjectKhovanskii theoryen_US
dc.subjectEhrhart theoryen_US
dc.titleСтатистика Селмерових група у фамилији елиптичких кривих придружених конгруентним бројевимаen_US
dc.title.alternativeJoint Distribution for the Selmer Ranks of the congruent Number Curvesen_US
dc.typeDoctoral Thesisen_US
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.description.rankM70en_US
dc.relation.firstpage68 str. ; 30 cmen_US
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeDoctoral Thesis-
item.fulltextNo Fulltext-
item.languageiso639-1other-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0003-3692-7951-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.