Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1973
DC FieldValueLanguage
dc.contributor.authorPavlović, Marinaen_US
dc.contributor.authorKovačević, Anđelkaen_US
dc.contributor.authorIlić, Draganaen_US
dc.contributor.authorČvorović-Hajdinjak, Ivaen_US
dc.contributor.authorPopović, Lukaen_US
dc.contributor.authorSimić, Sašaen_US
dc.date.accessioned2025-04-24T09:19:28Z-
dc.date.available2025-04-24T09:19:28Z-
dc.date.issued2023-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1973-
dc.description.abstractQuasar light curves exhibit intrinsic stochastic variability, which in combination with observational technical limitations, such as frequent observational gaps and irregular cadences, creates significant challenges for their analysis. To effectively address these challenges, in order to explore quasar underlying physical processes, the common incorporation of deep learning stands out as a key method for efficiently modeling quasar light curves. Here, we present our Python package, now available as ”QNPy” on the PyPI platform, which represents a groundbreaking tool for modeling quasar light curves using meta-learning algorithms which are called conditional neural processes. We demonstrate the first application of the QNPy Python package on two case-study samples sourced from the Data Challenge of the LSST AGN Science Collaboration [ 1] and the GAIA space mission.en_US
dc.language.isoenen_US
dc.publisherBeograd : Matematički fakulteten_US
dc.subjectquasarsen_US
dc.subjecttime series modelingen_US
dc.subjectcomputational astronomyen_US
dc.subjectdeep learningen_US
dc.titleHarnessing Deep Learning for Quasar Light Curve Modeling with QNPyen_US
dc.typeConference Objecten_US
dc.relation.conferenceSimpozijum "Matematika i primene"(13 ; 2023 ; Beograd)en_US
dc.relation.publicationXIII simpozijum "Matematika i primene" : knjiga apstrakata, Beograd 2023en_US
dc.identifier.urlhttps://simpozijum.matf.bg.ac.rs/KNJIGA_APSTRAKATA_2023.pdf-
dc.contributor.affiliationAstronomyen_US
dc.contributor.affiliationAstronomyen_US
dc.relation.isbn978-86-7589-185-7en_US
dc.description.rankM34en_US
dc.relation.firstpage60en_US
dc.relation.lastpage60en_US
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.deptAstronomy-
crisitem.author.deptAstronomy-
crisitem.author.orcid0000-0001-5139-1978-
crisitem.author.orcid0000-0002-1134-4015-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.