Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1963
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2025-04-16T08:30:36Z-
dc.date.available2025-04-16T08:30:36Z-
dc.date.issued2025-08-01-
dc.identifier.issn00243795-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1963-
dc.description.abstractA star complement in a graph G of order n is an induced subgraph H of order t, such that μ is an eigenvalue of multiplicity n−t of G, but not an eigenvalue of H. We use an idea of Torgašev to develop an algorithm based on star complements to characterize graphs with given rank (i.e., the number of non-zero eigenvalues of the adjacency matrix) or given number of eigenvalues distinct from −1. As a demonstration, we re-prove some known results concerning graphs with a comparatively small rank. By the same method, we characterize graphs having at most 6 eigenvalues distinct from −1. Comparisons with existing results are provided.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofLinear Algebra and Its Applicationsen_US
dc.subjectAdjacency matrixen_US
dc.subjectCo-twin verticesen_US
dc.subjectNullityen_US
dc.subjectStar complementen_US
dc.subjectTwin verticesen_US
dc.titleEmploying star complements in search for graphs with fixed ranken_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2025.03.021-
dc.identifier.scopus2-s2.0-105002113609-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/105002113609-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn0024-3795en_US
dc.description.rankM21en_US
dc.relation.firstpage14en_US
dc.relation.lastpage29en_US
dc.relation.volume718en_US
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.