Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/193
DC FieldValueLanguage
dc.contributor.authorPetrović, Zoranen_US
dc.contributor.authorPrvulović, Branislaven_US
dc.date.accessioned2022-08-06T17:08:47Z-
dc.date.available2022-08-06T17:08:47Z-
dc.date.issued2013-05-01-
dc.identifier.issn02194988en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/193-
dc.description.abstractThe knowledge of cohomology of a manifold has shown to be quite relevant in various investigations: the question of vector fields, immersion and embedding dimension, and recently even in topological robotics. The method of Gröbner bases is applicable when the cohomology of the manifold is a quotient of a polynomial algebra. The mod 2 cohomology of the real flag manifold F(n 1, n2, ..., nr) is known to be isomorphic to a polynomial algebra modulo a certain ideal. Reduced Gröbner bases for these ideals are obtained in the case of manifolds F(1, 1, ..., 1, n) including the complete flag manifolds (n = 1). © 2013 World Scientific Publishing Company.en
dc.relation.ispartofJournal of Algebra and its Applicationsen
dc.subjectcohomologyen
dc.subjectflag manifoldsen
dc.subjectGröbner basesen
dc.titleOn Gröbner bases for flag manifolds F(1, 1, ... , 1, n)en_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0219498812501824-
dc.identifier.scopus2-s2.0-84872459493-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84872459493-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.contributor.affiliationTopologyen_US
dc.relation.volume12en
dc.relation.issue3en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0002-8571-5210-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 9, 2024

Page view(s)

13
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.