Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/192
DC FieldValueLanguage
dc.contributor.authorPetrović, Zoranen_US
dc.contributor.authorPrvulović, Branislaven_US
dc.contributor.authorRadovanović, Markoen_US
dc.date.accessioned2022-08-06T17:08:47Z-
dc.date.available2022-08-06T17:08:47Z-
dc.date.issued2017-10-01-
dc.identifier.issn01668641en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/192-
dc.description.abstractWe determine the characteristic rank of the canonical oriented vector bundle over G˜3,n for all n≥3, and as a consequence, we obtain the affirmative answer to a conjecture of Korbaš and Rusin. As an application of this result, we calculate the Z2-cup-length for a new infinite family of manifolds G˜3,n. This result confirms the corresponding claim of Fukaya's conjecture.en
dc.relation.ispartofTopology and its Applicationsen
dc.subjectCharacteristic ranken
dc.subjectCup-lengthen
dc.subjectGrassmann manifolden
dc.subjectStiefel–Whitney classen
dc.titleCharacteristic rank of canonical vector bundles over oriented Grassmann manifolds G˜<inf>3,n</inf>en_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.topol.2017.08.010-
dc.identifier.scopus2-s2.0-85028891179-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85028891179-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.contributor.affiliationTopologyen_US
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.firstpage114en
dc.relation.lastpage121en
dc.relation.volume230en
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.deptAlgebra and Mathematical Logic-
crisitem.author.orcid0000-0002-8571-5210-
crisitem.author.orcid0000-0002-6990-1793-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

6
checked on Dec 18, 2024

Page view(s)

22
checked on Dec 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.