Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1929
DC FieldValueLanguage
dc.contributor.authorStanković, Hranislaven_US
dc.contributor.authorKrstić, Mihailoen_US
dc.contributor.authorDamnjanović, Ivanen_US
dc.date.accessioned2025-04-09T13:50:04Z-
dc.date.available2025-04-09T13:50:04Z-
dc.date.issued2024-01-01-
dc.identifier.issn03081087-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1929-
dc.description.abstractIn the given study, we consider the q-numerical radius (Formula presented.) of operator matrices defined on a direct sum of Hilbert spaces and investigate the various inequalities involving these values. We also prove that (Formula presented.) for all the (Formula presented.), thereby extending the well known equality regarding the numerical radii that occurs when we plug in q = 1. Subsequently, we give explicit formulae for computing (Formula presented.) for some special cases of operator matrices. Finally, we establish some analytical properties of (Formula presented.) regarded as a function in q.en_US
dc.language.isoenen_US
dc.publisherTaylor and Francisen_US
dc.relation.ispartofLinear and Multilinear Algebraen_US
dc.subjectNumerical radiusen_US
dc.subjectoperator matrixen_US
dc.subjectq-numerical radiusen_US
dc.subjectq-numerical rangeen_US
dc.titleSome properties of the q-numerical radiusen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/03081087.2024.2438927-
dc.identifier.scopus2-s2.0-85211246121-
dc.identifier.isi001371907300001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85211246121-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.issn0308-1087en_US
dc.description.rankM22en_US
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0003-3575-3216-
Appears in Collections:Research outputs
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.